Standard Normal Table

For a given value z, the cumulative probability is:

zΦ(z)zΦ(z)zΦ(z)zΦ(z)zΦ(z)zΦ(z)
0.010.50400.510.69501.010.84381.510.93452.010.97782.510.9940
0.020.50800.520.69851.020.84611.520.93572.020.97832.520.9941
0.030.51200.530.70191.030.84851.530.93702.030.97882.530.9943
0.040.51600.540.70541.040.85081.540.93822.040.97932.540.9945
0.050.51990.550.70881.050.85311.550.93942.050.97982.550.9946
0.060.52390.560.71231.060.85541.560.94062.060.98032.560.9948
0.070.52790.570.71571.070.85771.570.94182.070.98082.570.9949
0.080.53190.580.71901.080.85991.580.94292.080.98122.580.9951
0.090.53590.590.72241.090.86211.590.94412.090.98172.590.9952
0.100.53980.600.72571.100.86431.600.94522.100.98212.600.9953
0.110.54380.610.72911.110.86651.610.94632.110.98262.610.9955
0.120.54780.620.73241.120.86861.620.94742.120.98302.620.9956
0.130.55170.630.73571.130.87081.630.94842.130.98342.630.9957
0.140.55570.640.73891.140.87291.640.94952.140.98382.640.9959
0.150.55960.650.74221.150.87491.650.95052.150.98422.650.9960
0.160.56360.660.74541.160.87701.660.95152.160.98462.660.9961
0.170.56750.670.74861.170.87901.670.95252.170.98502.670.9962
0.180.57140.680.75171.180.88101.680.95352.180.98542.680.9963
0.190.57530.690.75491.190.88301.690.95452.190.98572.690.9964
0.200.57930.700.75801.200.88491.700.95542.200.98612.700.9965
0.210.58320.710.76111.210.88691.710.95642.210.98642.710.9966
0.220.58710.720.76421.220.88881.720.95732.220.98682.720.9967
0.230.59100.730.76731.230.89071.730.95822.230.98712.730.9968
0.240.59480.740.77041.240.89251.740.95912.240.98752.740.9969
0.250.59870.750.77341.250.89441.750.95992.250.98782.750.9970
0.260.60260.760.77641.260.89621.760.96082.260.98812.760.9971
0.270.60640.770.77941.270.89801.770.96162.270.98842.770.9972
0.280.61030.780.78231.280.89971.780.96252.280.98872.780.9973
0.290.61410.790.78521.290.90151.790.96332.290.98902.790.9974
0.300.61790.800.78811.300.90321.800.96412.300.98932.800.9974
0.310.62170.810.79101.310.90491.810.96492.310.98962.810.9975
0.320.62550.820.79391.320.90661.820.96562.320.98982.820.9976
0.330.62930.830.79671.330.90821.830.96642.330.99012.830.9977
0.340.63310.840.79951.340.90991.840.96712.340.99042.840.9977
0.350.63680.850.80231.350.91151.850.96782.350.99062.850.9978
0.360.64060.860.80511.360.91311.860.96862.360.99092.860.9979
0.370.64430.870.80781.370.91471.870.96932.370.99112.870.9979
0.380.64800.880.81061.380.91621.880.96992.380.99132.880.9980
0.390.65170.890.81331.390.91771.890.97062.390.99162.890.9981
0.400.65540.900.81591.400.91921.900.97132.400.99182.900.9981
0.410.65910.910.81861.410.92071.910.97192.410.99202.910.9982
0.420.66280.920.82121.420.92221.920.97262.420.99222.920.9982
0.430.66640.930.82381.430.92361.930.97322.430.99252.930.9983
0.440.67000.940.82641.440.92511.940.97382.440.99272.940.9984
0.450.67360.950.82891.450.92651.950.97442.450.99292.950.9984
0.460.67720.960.83151.460.92791.960.97502.460.99312.960.9985
0.470.68080.970.83401.470.92921.970.97562.470.99322.970.9985
0.480.68440.980.83651.480.93061.980.97612.480.99342.980.9986
0.490.68790.990.83891.490.93191.990.97672.490.99362.990.9986
0.500.69151.000.84131.500.93322.000.97722.500.99383.000.9987

查询负值的 Z-score

对于负值的 Z-score,使用对称性原理:

  • 标准正态分布是对称的,因此
  • 例如,要查找 的累积概率,首先找到 的累积概率,然后用 计算。

示例

  • 查找 的累积概率:
    1. 查表得 的累积概率约为 0.9332。
    2. 计算

因此, 的累积概率为 0.0668。